

Page 1 from 11

Metals & Traces®

HEAVY METALS & TRACE MINERALS EXTENDED PROFILE, HAIR

Name:	Gender: MALE	Age: 40 YEARS	
Date of Sampling: 12 SEPTEMBER 2022	Date of Analysis: 12 SEPTEMBER 2022		
Specimen: Hair	Patient Code Number:		

Ess	Essential Trace Elements				
Code	TEST		RESULT		REFERENCE VALUES
1851	Chromium (Cr), Hair	24 Cr Chromium 51.996	0,050 μg/g	•	Adults 0.020 – 0.210 μg/g Children 0.020 – 0.150 μg/g
1918	Copper (Cu), Hair	²⁹ Cu ^{Copper} 63.546	16,150 µg/g	•	Adults 10.000 – 41.000 μg/g Children 6.700 – 37.000 μg/g
1209	Cobalt (Co), Hair	27 CO Cobalt 58.933	0,005 μg/g	\checkmark	Adults 0.010 – 0.300 μg/g Children 0.010 – 0.150 μg/g
1124	lodine (I), Hair	53 J lodine 126.904	0,213 μg/g	•	Adults 0.050 – 5.000 μg/g Children 0.015 – 3.500 μg/g
1970	Iron (Fe), Hair	²⁶ Fe Iron 55.845	6,405 μg/g	•	Adults 4.600 – 17.700 μg/g Children 7.700 – 15.000 μg/g
1315	Manganese (Mn), Hair	²⁵ Mn Manganese 54.938	0,188 μg/g	•	Adults 0.050 – 0.920 μg/g Children 0.070 – 0.500 μg/g
1354	Molybdenum (Mo), Hair	42 Mo Molybdenum 95.95	0,031 μg/g	•	Adults 0.030 – 1.100 μg/g Children 0.020 – 1.000 μg/g
1917	Selenium (Se), Hair	34 Se Selenium 78.972	0,789 μg/g	•	Adults 0.400 – 1.700 μg/g Children 0.400 – 1.400 μg/g

Reference Values & Methods adapted from:

0

Analytical Biochemistry, Holme & Peck, 3rd ed., 1998, Prentice Hall
 Laboratory Tests and Diagnostic Procedures, Chernecky & Berger, 5th ed., 2008, Saunders Elsevier
 Interpretation of Diagnostic Tests, Wallach, 8th ed., 2007, Lippincott

An ISO 9001:2015 Certified Lab. Certificate Registration No: 6133.159/18

Vasilis J. Sideris **Medical Doctor** Biopathologist

Page 2 from 11

Metals & Traces®

HEAVY METALS & TRACE MINERALS EXTENDED PROFILE, HAIR

Name:	Gender: MALE	Age: 40 YEARS	
Date of Sampling: 12 SEPTEMBER 2022	Date of Analysis: 12 SEPTEMBER 2022		
Specimen: Hair	Patient Code Number:		

Ess	Essential Trace Elements & Microelements						
Code	TEST		RESULT		REFERENCE VALUES		
350	Vanadium (V), Hair	²³ V Vanadium 50.942	0,015 μg/g	•	Adults 0.010 – 0.200 μg/g Children 0.010 – 0.150 μg/g		
1916	Zinc (Zn), Hair	30 Zn Zinc 65.38	116,742 µg/g	↓	150.000 – 272.000 μg/g		

Ess	Essential Microelements						
Code	TEST	RESULT	REFERENCE VALUES				
1912	Calcium (Ca), Hair	207,795 μg/g 🛛 🤟	Adults 220.00 – 1600.00 μg/g Children 200.00 – 850.00 μg/g				
1913	Magnesium (Mg), Hair	20,784 μg/g •	Adults 20.00 – 130.00 μg/g Children 20.00 – 115.00 μg/g				

Reference Values & Methods adapted from:

Analytical Biochemistry, Holme & Peck, 3rd ed., 1998, Prentice Hall
 Laboratory Tests and Diagnostic Procedures, Chernecky & Berger, 5th ed., 2008, Saunders Elsevier
 Interpretation of Diagnostic Tests, Wallach, 8th ed., 2007, Lippincott

An ISO 9001:2015 Certified Lab. Certificate Registration No: 6133.159/18

Vasilis J. Sideris **Medical Doctor** Biopathologist

Mesogeion 6, Ampelokipoi 115 27 • Tel: 210-7777.654 • FAX: 210-7777.634 • www.athenslab.gr

0

HEAVY METALS & TRACE MINERALS EXTENDED PROFILE, HAIR

Name:	Gender: MALE	Age: 40 YEARS	
Date of Sampling: 12 SEPTEMBER 2022	Date of Analysis: 12 SEPTEMBER 2022		
Specimen: Hair	Patient Code Number:		

No	Non-Essential Trace Elements					
Code	TEST		RESULT		REFERENCE VALUES	
437	Boron (B), Hair	5 B Boron 10.811	0,374 μg/g	•	Adults < 0.840 μg/g Children < 2.000 μg/g	
483	Germanium (Ge), Hair	³² Ge Germanium 72.631	0,004 μg/g	•	Adults < 1.650 μg/g Children < 0.500 μg/g	
1911	Lithium (Li), Hair	³ Li Lithium 6.941	0,001 µg/g	•	Adults < 0.300 μg/g Children < 0.200 μg/g	
1661	Strontium (Sr), Hair	³⁸ Sr Strontium 87.62	0,554 μg/g	\downarrow	Adults 0.650 – 6.900 μg/g Children 0.110 – 4.280 μg/g	
430	Tungsten (W) , Hair	74 W Tungsten 183.84	0,001 μg/g	•	Adults < 0.010 μg/g Children < 0.020 μg/g	

Reference Values & Methods adapted from:

Q

Analytical Biochemistry, Holme & Peck, 3rd ed., 1998, Prentice Hall
 Laboratory Tests and Diagnostic Procedures, Chernecky & Berger, 5th ed., 2008, Saunders Elsevier
 Interpretation of Diagnostic Tests, Wallach, 8th ed., 2007, Lippincott

An ISO 9001:2015 Certified Lab. Certificate Registration No: 6133.159/18

Vasilis J. Sideris **Medical Doctor** Biopathologist

Page 4 from 11

Metals & Traces®

HEAVY METALS & TRACE MINERALS EXTENDED PROFILE, HAIR

Name:	Gender: MALE	Age: 40 YEARS	
Date of Sampling: 12 SEPTEMBER 2022	Date of Analysis: 12 SEPTEMBER 2022		
Specimen: Hair	Patient Code Number:		

Pot	Potentially Toxic Elements				
Code	TEST		RESULT		REFERENCE VALUES
152	Aluminum (Al), Hair	¹³ AI Aluminum 26.982	5,229 μg/g	•	< 8.000 μg/g
230	Antimony (Sb), Hair	⁵¹ Sb Antimony 121.760	0,023 μg/g	•	Adults < 0.300 μg/g Children < 0.200 μg/g
317	Silver (Ag), Hair	47 Ag Silver 107.868	0,060 µg/g	•	< 1.000 µg/g
325	Arsenic (As)-Whole, Hair	³³ As Arsenic 74.922	0,032 μg/g	•	< 0.200 μg/g
361	Barium (Ba), Hair	⁵⁶ Ba Barium 137.328	0,376 µg/g	•	Adults < 4.640 μg/g Children < 2.650 μg/g
383	Beryllium (Be), Hair	⁴ Be Beryllium 9.012	0,002 μg/g	•	Adults < 0.100 μg/g Children < 0.030 μg/g
395	Bismuth (Bi), Hair	83 Bi Bismuth 208.980	0,002 μg/g	•	Adults < 0.200 μg/g Children < 0.180 μg/g
458	Gadolimium(Gd), Hair	⁶⁴ Gd Gadolinium 157.25	0,005 μg/g	•	< 0.010 μg/g

Reference Values & Methods adapted from:

Q

Analytical Biochemistry, Holme & Peck, 3rd ed., 1998, Prentice Hall
 Laboratory Tests and Diagnostic Procedures, Chernecky & Berger, 5th ed., 2008, Saunders Elsevier
 Interpretation of Diagnostic Tests, Wallach, 8th ed., 2007, Lippincott

An ISO 9001:2015 Certified Lab. Certificate Registration No: 6133.159/18

Vasilis J. Sideris **Medical Doctor** Biopathologist

HEAVY METALS & TRACE MINERALS EXTENDED PROFILE, HAIR

Name:	Gender: MALE	Age: 40 YEARS	
Date of Sampling: 12 SEPTEMBER 2022	Date of Analysis: 12 SEPTEMBER 2022		
Specimen: Hair	Patient Code Number:		

Pot	Potentially Toxic Elements				
Code	TEST	RESULT		REFERENCE VALUES	
468		ia ^{lium} ⁷²³ 0,016 μg/g	•	< 0.070 μg/g	
532	Cerium (Ce), Hair Ce	Ce 0,078 μg/g	•	< 0.100 µg/g	
552	Dysprosium (Dy), nam Dysp	Oy prosium 2.500 0,000 μg/g	•	< 0.010 μg/g	
958		Er ^{bium} 7.259 0,000 μg/g	•	< 0.010 µg/g	
981	Europium (Eu), Hair Eur	Eu ^{opium} 1.964 0,000 μg/g	•	< 0.010 µg/g	
996	Zircomium (Zr), Hair zirc	Zr ^{onium} 1.224 0,021 μg/g	•	Adults < 0.500 μg/g Children < 0.470 μg/g	
1033		TI allium 4.383	•	Adults < 0.010 μg/g Children < 0.010 μg/g	
1041	Thorium (Th), Hair	Γh ^{orium} 2.038 0,006 μg/g	•	< 0.010 µg/g	

Reference Values & Methods adapted from:

Q

Analytical Biochemistry, Holme & Peck, 3rd ed., 1998, Prentice Hall
 Laboratory Tests and Diagnostic Procedures, Chernecky & Berger, 5th ed., 2008, Saunders Elsevier
 Interpretation of Diagnostic Tests, Wallach, 8th ed., 2007, Lippincott

An ISO 9001:2015 Certified Lab. Certificate Registration No: 6133.159/18

Vasilis J. Sideris **Medical Doctor** Biopathologist

Page 6 from 11

Metals & Traces®

HEAVY METALS & TRACE MINERALS EXTENDED PROFILE, HAIR

Name:	Gender: MALE	Age: 40 YEARS		
Date of Sampling: 12 SEPTEMBER 2022	Date of Analysis: 12 SE	Date of Analysis: 12 SEPTEMBER 2022		
Specimen: Hair	Patient Code Number:	Patient Code Number:		

Pot	Potentially Toxic Elements					
Code	TEST		RESULT		REFERENCE VALUES	
1048	Thulium (Tm), Hair	⁶⁹ Tm Thulium 168.394	0,001 µg/g	•	< 0.010 µg/g	
1112	Iridium (Ir), Hair	77 Ir Iridium 192.217	0,000 µg/g	•	< 0.010 μg/g	
1131	Cadmium (Cd), Hair	48 Cd Cadmium 112.411	0,012 μg/g	•	< 0.200 μg/g	
1140	Cesium (Cs), Hair	55 Cs Cesium 132.905	0,004 μg/g	•	< 0.010 µg/g	
1187	Tin (Sn), Hair	50 Sn Tin 118.711	0,141 μg/g	•	Adults < 0.700 μg/g Children < 0.330 μg/g	
1259	Lanthanum (La), Hair	57 La Lanthanum 138.905	0,011 μg/g	•	< 0.021 µg/g	
1303	Lutetium (Lu), Hair	71 LU Lutetium 174.967	0,001 µg/g	•	< 0.010 μg/g	
1284	Platinum (Pt), Hair	78 Pt Platinum 106.42	0,002 μg/g	•	Adults < 0.010 μg/g Children < 0.007 μg/g	

Reference Values & Methods adapted from:

0

Analytical Biochemistry, Holme & Peck, 3rd ed., 1998, Prentice Hall
 Laboratory Tests and Diagnostic Procedures, Chernecky & Berger, 5th ed., 2008, Saunders Elsevier
 Interpretation of Diagnostic Tests, Wallach, 8th ed., 2007, Lippincott

An ISO 9001:2015 Certified Lab. Certificate Registration No: 6133.159/18

Vasilis J. Sideris **Medical Doctor** Biopathologist

Page 7 from 11

Metals & Traces®

HEAVY METALS & TRACE MINERALS EXTENDED PROFILE, HAIR

Name:	Gender: MALE	Age: 40 YEARS		
Date of Sampling: 12 SEPTEMBER 2022	Date of Analysis: 12 SEPTEMBER 2022			
Specimen: Hair	Patient Code Number:			

Pot	Potentially Toxic Elements					
Code	TEST		RESULT		REFERENCE VALUES	
1361	Lead (Pb), Hair	82 Pb Lead 207.2	1,087 µg/g	•	< 3.000 μg/g	
1418	Nickel (Ni), Hair	28 Ni Nickel 58.693	0,079 μg/g	•	Adults < 1.000 μg/g Children < 0.850	
1479	Uranium (U), Hair	92 U Uranium 238.029	0,032 μg/g	•	< 0.100 µg/g	
1497	Palladium (Pd), Hair	46 Pd Palladium 106.42	0,000 µg/g	•	Adults < 0.100 μg/g Children < 0.020 μg/g	
1562	Praseodymium (Pr), Hair	⁵⁹ Pr Praseodymii 140.908	0,002 μg/g	•	< 0.010 µg/g	
1596	Rhenium (Re), Hair	75 Re Rhenium 186.207	0,003 µg/g	•	< 0.010 µg/g	
1608	Rhodium (Rh), Hair	45 Rh Rhodium 102.906	0,000 µg/g	•	< 0.010 µg/g	
1616	Ruthenium (Ru), Hair	44 Ru Ruthenium 101.07	0,001 µg/g	•	< 0.100 µg/g	

Reference Values & Methods adapted from:

Q

Analytical Biochemistry, Holme & Peck, 3rd ed., 1998, Prentice Hall
 Laboratory Tests and Diagnostic Procedures, Chernecky & Berger, 5th ed., 2008, Saunders Elsevier
 Interpretation of Diagnostic Tests, Wallach, 8th ed., 2007, Lippincott

An ISO 9001:2015 Certified Lab. Certificate Registration No: 6133.159/18

Vasilis J. Sideris **Medical Doctor** Biopathologist

HEAVY METALS & TRACE MINERALS EXTENDED PROFILE, HAIR

Name:	Gender: MALE	Age: 40 YEARS			
Date of Sampling: 12 SEPTEMBER 2022	Date of Analysis: 12 SEPTEMBER 2022				
Specimen: Hair	Patient Code Number:				

Pot	Potentially Toxic Elements					
Code	TEST		RESULT		REFERENCE VALUES	
1627	Samarium (Sm), Hair	⁶² Sm Samarium 150.36	0,001 µg/g	•	< 0.010 µg/g	
1685	Tantalum (Ta), Hair	⁷³ Ta Tantalum 180.948	0,000 μg/g	•	< 0.010 µg/g	
1693	Tellurium (Te), Hair	⁵² Te Tellurium 127.6	0,000 μg/g	•	< 0.010 µg/g	
1711	Titanium (Ti), Hair	²² Ti Titanium 47.867	0,094 μg/g	•	Adults < 1.500 μg/g Children < 0.650 μg/g	
1754	Mercury (Hg) , Hair	⁸⁰ Hg Mercury 200.952	0,134 μg/g	•	Adults < 0.600 μg/g Children < 0.300 μg/g	
1772	Ytterbium (Yb), Hair	⁷⁰ Yb Ytterbium 173.055	0,001 µg/g	•	< 0.010 µg/g	

Note: Children reference values apply to ages < 10

* ND = Not Detected

The methodology used to measure all elements is ICP-MS: Inductively Coupled Plasma Mass Spectroscopy

For reference values $\mu g/g = mg/kg = ppm$ (parts per million)

Reference Values & Methods adapted from:

Analytical Biochemistry, Holme & Peck, 3rd ed., 1998, Prentice Hall
 Laboratory Tests and Diagnostic Procedures, Chernecky & Berger, 5th ed., 2008, Saunders Elsevier
 Interpretation of Diagnostic Tests, Wallach, 8th ed., 2007, Lippincott

An ISO 9001:2015 Certified Lab. Certificate Registration No: 6133.159/18

Vasilis J. Sideris Medical Doctor Biopathologist

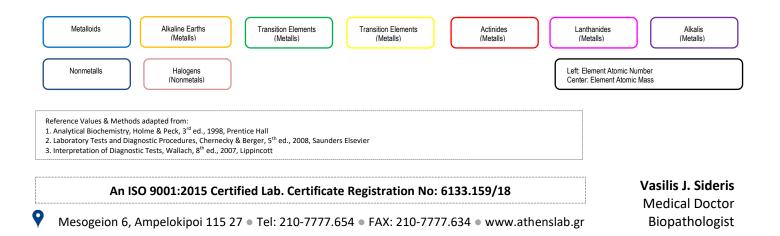
HEAVY METALS & TRACE MINERALS EXTENDED PROFILE, HAIR

Name:	Gender: MALE	Age: 40 YEARS				
Date of Sampling: 12 SEPTEMBER 2022	Date of Analysis: 12 SE	Date of Analysis: 12 SEPTEMBER 2022				
Specimen: Hair	Patient Code Number:	Patient Code Number:				

General Notes and Comments

The information contained in this report is an interpretive aid to diagnostic procedures. The findings should be related to clinical examination, individual medical history, and possibly other diagnostic tests. Reference values have been obtained from CDC (Center for Disease Control and Prevention, USA), WHO (World Health Organization) and other international agencies.

Results are reported in $\mu g/g = mg/kg = ppm$ (parts per million).


Important Note: As it is extremely difficult to distinguish between chemically dyed and non-dyed hair, we consider that the spectroscopic analysis was performed on undyed hair, as explained in detail to the person concerned prior to analysis. Chemically treated hair, such as dyed, do not provide reliable results and our laboratory cannot be held responsible for data obtained from hair that have been dyed or chemically treated.

Heavy Metals become toxic to the body because they can take the place of other elements in the macromolecules of cells (e.g., enzymes, proteins, etc.). For example, Cadmium (Cd) toxicity occurs because it can replace Zinc (Zn) in many important enzymes that contain Zinc in their structure, thus rendering them inactive.

All the above are general notes and comments.

Consult your Physician for interpreting the results and administering the most appropriate treatment regimen for your very specific case.

IMPORTANT NOTE: Special laboratory tests are performed for research purposes and as ancillary or supplementary tests in the context of a conventional laboratory test. Special laboratory tests should only be used in conjunction with other established medical data (e.g., medical history, symptoms, clinical examination, results of other lab tests, etc.).

Metals & Traces[®]

HEAVY METALS & TRACE MINERALS EXTENDED PROFILE, HAIR

Name:	Gender: MALE	Age: 40 YEARS			
Date of Sampling: 12 SEPTEMBER 2022	Date of Analysis: 12 SE	Date of Analysis: 12 SEPTEMBER 2022			
Specimen: Hair	Patient Code Number:	Patient Code Number:			

Special Comments

COBALT

Cobalt is part of the Vitamin B12 molecule and is necessary for Vitamin B12 activity and function. Cobalt, which is mainlystored in the liver, activates numerous enzymes, and is excreted in bile. A low dietary intake inhibits fetal development andmay reflect a low intake of Vitamin B12.

Sources: All animal products, including all meats, fish, cheese, brewer's yeast and yeast extracts. Strict vegetarians(vegans) and those who lack intrinsic factor risk vitamin B12 and cobalt deficiency. Symptoms: Include pernicious anemia. Therapeutic Consideration: Increase vitamin B12 intake and/or consumption of cobalt-rich foods

ZINC

Zinc is a cofactor for many metalloenzymes, including those involved in RNA and DNA synthesis. It is an essential element for growth, normal cell division and insulin production. Pregnant women, children, cancer patients, and burn victims are at high risk for zinc deficiency, causing fatigue, poor growth, menstrual problems, and reproductive system problems. The causes of deficiency are malnutrition and malabsorption. The most common symptoms of zinc deficiency are skin problems, diarrhea, anorexia, hair loss, growth retardation, extreme irritability, and increased susceptibility to infections. The absorption of zinc takes place mainly in the small intestine and the presence of vitamin B6 is necessary for its use. The minimum daily requirement is 3-10 mg, depending on age and gender. In severe zinc deficiencies, a higher intake can be accomplished with appropriate supervision.

Children: Zinc is distributed in all tissues, with significant concentrations in the eye, (especially the retina, iris, and choroid), kidneys, liver, brain, muscles, and testes. Thus, young boys have a great need for zinc. In acute zinc deficiency, taste is impaired and wound healing is slow. Thus, zinc deficiency is a common problem among children suffering from dermatitis and other skin problems. Zinc acts as a binding material for certain amino acids, including cysteine, an amino acid required for healthy hair growth. It is also needed for insulin and protein synthesis and children with zinc deficiency are prone to sugar intolerance, digestive problems in protein digestion and food intolerances. Zinc is vital for maintaining normal levels of vitamin A and for certain enzyme reactions necessary for the normal functioning of the sebaceous glands of the skin. Strictly vegetarian diets and children with a diet that includes a high intake of refined carbohydrates, sugars and fat are prone to low zinc levels. If zinc deficiency occurs during a period of rapid growth, the clinical manifestations are most severe.

Sources: Yeast, meat, fish, legumes, and eggs. Zinc in cereals has low bioavailability. Phytic acids interfere with zinc absorption, and a large intake of whole grains can cause zinc deficiency. Thus, a diet high in cereals and low in animal protein can cause zinc deficiency. Zinc in infant formulas is not absorbed as well as zinc in breast milk, which contains a zinc-binding protein that increases intestinal absorption. Thus, formula-fed children are prone to zinc deficiency at an early age, and if not properly treated, it can persist and intensify over the following years.

Therapeutic Consideration: Zinc supplementation and increased intake of vitamin B6. Geophagy and intestinal parasites also contribute to low zinc absorption. Over-exposure to toxic metals reduces zinc absorption and increases the need for zinc and vitamin B6. A high intake of molybdenum and iron also affects zinc absorption.

STRONTIUM

Strontium has similar physiological and chemical properties to calcium, but its necessity has not yet been established. In humans, strontium is poorly absorbed in the intestinal tract, with younger people having a higher rate of absorption. Clinically, strontium has been associated with strong teeth and bones. Studies show that strontium improves tooth decay resistance. It

An ISO 9001:2015 Certified Lab. Certificate Registration No: 6133.159/18

Vasilis J. Sideris Medical Doctor Biopathologist

Reference Values & Methods adapted from

^{1.} Analytical Biochemistry, Holme & Peck, 3rd ed., 1998, Prentice Hall

^{2.} Laboratory Tests and Diagnostic Procedures, Chernecky & Berger, 5th ed., 2008, Saunders Elsevier 3. Interpretation of Diagnostic Tests, Wallach, 8th ed., 2007, Lippincott

Page 11 from 11

has been found that in areas where the water contains higher concentrations of strontium and molybdenum, the rate of caries is lower than in areas where the drinking water is enriched with fluoride. Strontium can improve cell structures and its functions are similar to those of calcium.

Sources: Drinking water, depending on geographic area, Brazil nuts, bran, all root vegetables (bulbs), and milk. Vitamin D (and sun exposure), lysine and arginine improve strontium absorption. When magnesium is deficient, strontium absorption is reduced.

CALCIUM

Calcium is necessary for the development of bones and teeth, the function of muscle and nerve cells, the secretion of hormones and the proper functioning of the immune system, among others. Symptoms of calcium deficiency include muscle cramps, musculoskeletal pain, particularly severe menstrual pain, periodontal disease, and osteoporosis. The average recommended daily intake is 800-1800, depending on age, sex, lactation, or pregnancy. The lowest daily intake is 500 mg for children up to 1 year of age, 600 mg for ages 1-3 years, 700 mg for ages 4-6 years, 800 mg for ages 7-9 years, and 900-1000 mg for ages 10-14 years, depending on the child's condition. The body's ability to absorb calcium decreases with age, due to hormonal changes, reduced gastric function and reduced activity levels.

Sources of Calcium: Dairy products, green leafy vegetables, citrus fruits, molasses, and fish with edible bones.

Therapeutic Approaches: If low calcium levels are detected in people who consume moderate to high amounts of dairy products, digestive problems and intolerance to dairy products may be present. High fat consumption prevents calcium absorption. To further support calcium absorption, it is recommended to increase physical activity and especially muscle strengthening exercises. Taking dietary supplements such as vitamin D, the amino acid lysine, and digestive enzymes containing hydrochloric acid and pepsin, along with probiotics (lactobacilli) help with intestinal absorption of calcium.

Reference Values & Methods adapted from:

1. Analytical Biochemistry, Holme & Peck, 3rd ed., 1998, Prentice Hall

2. Laboratory Tests and Diagnostic Procedures, Chernecky & Berger, 5th ed., 2008, Saunders Elsevier

3. Interpretation of Diagnostic Tests, Wallach, 8th ed., 2007, Lippincott

An ISO 9001:2015 Certified Lab. Certificate Registration No: 6133.159/18

Vasilis J. Sideris Medical Doctor Biopathologist